Use of LiDAR and Thermal Images for Bridge Deck Inspection

Ammad Khan, Abir Hadi, Kwanghee Won, and Mostafa Tazarv

Departments of Civil and Environmental Engineering, and Electrical Engineering & Computer Science

South Dakota State University

Presentation Prepared for: ITS Alaska 2024 Annual Meeting

SOUTH DAKOTA STATE UNIVERSITY Sept. 17, 2024

Funding Agencies

- Alaska Department of Transportation & Public Facilities
- National Center for Transportation Infrastructure Durability and Life Extension (TriDurLE)
- Center for Transformative Infrastructure Preservation and Sustainability (CTIPS)

TriDurLE

National Center for Transportation Infrastructure Durability & Life-Extension

Center for Transformative

and Sustainability

Infrastructure Preservation

CTIPS

Project Goals and Objectives

The main goal of the study is to develop practical AI (computer vision) tools that help bridge inspectors with defect detection and quantification, and automate inspection reporting. The focus is on bridge deck delamination.

Computer Vision

Computer vision (CV), a field of artificial intelligence (AI), enables computers to interpret and understand visual information from images and videos to make sense of their content.

Bridge Inspection

Can we use new technologies to expedite bridge inspections?

.

Proposed Solutions

for Delamination in Concrete Bridge Decks

New Tools for Bridge Deck Inspection

T

Drone-Based Solution

DJI Mavic 3T

AI-iPhone-Based Assessment

Delamination Annotation Detection

AI-iPhone Based Deck Inspection

 Allow inspectors to find delamination using conventional

methods (e.g., chain drag) and paint the defected areas.

- Use iPhone/iPad-LiDAR camera to scan the bridge deck.
- Our program extracts a 2D map of the bridge deck and finds the inspector markups using AI.

3D Mesh to 2D Deck Map

Ø Meshlab 2023.12 - [Project_1] Ø File Ldit filters tender View Windows Tools Help	- ð × - ð×
	× 🛪 🔍
	Project_1 Ø X
	> poly (12 % G in a w
	1 2 3 41 <u>></u> +1 + 1 2 3 4 poly.abj
	Shading Vert Face None
	Color Face Mesh User Def
	Back-Face Single Double Fancy Cult
	Texture Coord On Off
	andu to all visible bases
iPhone (PolyCam) Generated 3D Mesh	

2D Map of Bridge Deck

AI Delamination Detection on 2D Deck Map

1 5

- Inspected 45 bridges
- 11,551 RGB photos
 (training 70,000)
- 40 lidar maps

AI (U-Net) Prediction

1]

Г

99% Accuracy

on 18 Bridges

AI Delamination Detection with CS Estimation

Proposed Condition States for Delamination in Concrete Decks

Defects	CS 1	CS 2	CS 3	CS 4
	Good	Fair	Poor	Severe
Delamination, Spall, or Patched Area (1080)	Defected area is less than or equal to 7 in ²	Defected area is greater than 7 in ² (45 cm ²) but less than 30	Defected area is greater than 30 in ² (195 cm ²) but less	Defected area is greater than 110 in^2 (710 cm ²)
/ IICu (1000)	(45 cm^2)	in^2 (195 cm ²)	than $110 \text{ in}^2 (710 \text{ cm}^2)$	

AI-Drone-Based Assessment

Fully Autonomous Delamination Detection

AI-Drone Based Bridge Deck Inspection

- Fly drones that are equipped with RGB-thermal cameras.
 Scan the bridge deck.
- 2. Our AI software develops a 2D map of the bridge deck by stitching RGB images, overlays the thermal data on the top of **RGB**, and finds delamination automatically.

Thermal Data Training

- Inspected more than 45 bridges.
- Obtained more than 2,000 thermal images. Data was augmented to 5,000 for training, saved 400 images for evaluation. Used U-Net.

Sample of Thermal Data with Inspector-found Delamination and Additional that were missed

AI Predicted Delamination from Thermal Data

86% Accuracy over 400 images

AI-Drone Based Bridge Deck Inspection

White Areas are delaminated concrete by Al

AI-Drone Based Inspection for Whole Deck

- Highway overpass
- Bridge Length = 293 ft
- Bridge Width = 44 ft.

RGB-to-Thermal Images Stitching

11 RGB Images at 50-ft Height

Temperature (°C)

AI Predicted Delamination on Full Length

Thermal Stitched Image based on Homography

AI Predicted Delamination

Questions?

Mostafa Tazarv, PhD, PE,

Associate Professor Department of Civil and Environmental Engineering South Dakota State University Tel: (605) 688-6526, Fax: (605) 688-6476 <u>Mostafa.tazarv@sdstate.edu</u> <u>https://sites.google.com/view/mostafa-tazarv</u>